Search results for "genetic code"
showing 10 items of 26 documents
Chloroplastic glutamine synthetase from Brassica napus.
1993
Synthesis and Evaluation of Novel Ring‐Strained Noncanonical Amino Acids for Residue‐Specific Bioorthogonal Reactions in Living Cells
2021
Abstract Bioorthogonal reactions are ideally suited to selectively modify proteins in complex environments, even in vivo. Kinetics and product stability of these reactions are crucial parameters to evaluate their usefulness for specific applications. Strain promoted inverse electron demand Diels–Alder cycloadditions (SPIEDAC) between tetrazines and strained alkenes or alkynes are particularly popular, as they allow ultrafast labeling inside cells. In combination with genetic code expansion (GCE)‐a method that allows to incorporate noncanonical amino acids (ncAAs) site‐specifically into proteins in vivo. These reactions enable residue‐specific fluorophore attachment to proteins in living mam…
The human gene encoding cytokeratin 20 and its expression during fetal development and in gastrointestinal carcinomas
1993
The differentiation of the predominant cell types of the mucosal epithelium of the mammalian gastrointestinal tract is characterized by increasing amounts of an intermediate-sized filament (IF) protein designated cytokeratin (CK) 20 which is a major cellular protein of mature enterocytes and goblet cells. Here we report the isolation of the human gene encoding CK 20, its complete nucleotide sequence and the amino acid sequence deduced therefrom that identifies this polypeptide (mol. wt. 48553) as a member of the type I-CK subfamily. Remarkable, however, is the comparably great sequence divergence of CK 20 from all other known type I-CKs, with only 58% identical amino acids in the conserved …
Genes, genomes, and codes : revisiting some key terms with multiple meanings
2015
Is a genome the full complement of an organism?s genes or of its DNA? Is genetics the study of genes or of heredity? Is the genetic code the mechanism for translating nucleotide sequence to amino acid sequence or to phenotype? Does «genetic information» refer to the sequences coding for proteins or to all DNA sequences? Each of these questions stems from an elision between one, concrete, meaning, and another, open-ended and ambiguous. Such elision invites the illusion that the ambiguity of the open-ended term has been resolved, and by implication, that the gap between actual achievement and promise has been closed. Yet, despite the phenomenal progress molecular biology has made, we remain w…
Synthetic biomolecular condensates to engineer eukaryotic cells
2021
Abstract The compartmentalization of specific functions into specialized organelles is a key feature of eukaryotic life. In particular, dynamic biomolecular condensates that are not membrane enclosed offer exciting opportunities for synthetic biology. In recent years, multiple approaches to generate and control condensates have been reported. Notably, multiple orthogonally translating organelles were designed that enable precise protein engineering inside living cells. Despite being built from only very few components, orthogonal translation can be engineered with subresolution precision at different places inside the same cell to create mammalian cells with multiple expanded genetic codes.…
Genomic determinants of protein folding thermodynamics in prokaryotic organisms.
2004
Here we investigate how thermodynamic properties of orthologous proteins are influenced by the genomic environment in which they evolve. We performed a comparative computational study of 21 protein families in 73 prokaryotic species and obtained the following main results. (i) Protein stability with respect to the unfolded state and with respect to misfolding are anticorrelated. There appears to be a trade-off between these two properties, which cannot be optimized simultaneously. (ii) Folding thermodynamic parameters are strongly correlated with two genomic features, genome size and G+C composition. In particular, the normalized energy gap, an indicator of folding efficiency in statistical…
Genetic variation in neuromuscular performance.
1973
Using a simple cumulative model of heredity plus environment, based on intrapair differences observed in monozygous (MZ) and dizygous (DZ) twins, the relative contribution of heredity to the interindividual variance in several neuromuscular parameters was determined with 15 pairs of male (8 MZ and 7 DZ) and 14 pairs of female (7 MZ and 7 DZ) twins ranging in age from 10 to 14 years. The data disclosed that in boys the variability in maximal mechanical (anaerobic) power was 99.2% genetically determined under the environmental conditions of the study. The corresponding heritability estimate values for the patellar reflex time and reaction time were 97.5% and 85.7%, respectively. In girls the …
On the dimerization of the primitive tRNAs: implications in the origin of genetic code.
2002
RNAs that catalyse their own aminoacylation have been recently selected in vitro. These findings support the notion that the primitive aminoacyl-tRNA synthetases may have been RNAs. In this paper, we propose a structural model for the first aminoacyl-tRNA synthetase consisting of an RNA complex formed between two primitive tRNA molecules through two intermolecular loop-strand interactions, and with implications in the origin of the genetic code.
Transcriptomic and Genetic Associations between Alzheimer's Disease, Parkinson's Disease, and Cancer.
2021
Simple Summary Epidemiological studies have identified a link between neurodegenerative disorders and a reduced risk of overall cancer. Increases and decreases in the risk of site-specific cancers have also been reported. However, it is still unknown whether these associations arise due to shared genetic and molecular factors or are explained by other phenomena (e.g., biases in epidemiological studies or the use of medication). In this study, we aimed to investigate the potential molecular, genetic, and pharmacological links between Alzheimer’s and Parkinson’s diseases and a large panel of 22 cancer types. To examine the overlapping involvement of genes and pathways, we obtained differentia…
Dual film-like organelles enable spatial separation of orthogonal eukaryotic translation
2021
Summary Engineering new functionality into living eukaryotic systems by enzyme evolution or de novo protein design is a formidable challenge. Cells do not rely exclusively on DNA-based evolution to generate new functionality but often utilize membrane encapsulation or formation of membraneless organelles to separate distinct molecular processes that execute complex operations. Applying this principle and the concept of two-dimensional phase separation, we develop film-like synthetic organelles that support protein translation on the surfaces of various cellular membranes. These sub-resolution synthetic films provide a path to make functionally distinct enzymes within the same cell. We use t…